[image:]

[bookmark: _Toc212448376]Executive Summary

This Databricks learning booklet provides a brief look at the Databricks platform, covering everything from foundational concepts to advanced capabilities. It begins with data ingestion, transformation, and Delta Lake fundamentals, then progresses through machine learning workflows, job orchestration, and robust security and governance practices. Each chapter includes practical examples, real-world scenarios, and best practices to help data engineers, analysts, and data scientists build scalable, secure, and production-ready solutions. With a focus on automation, performance, and compliance, this booklet equips professionals to fully leverage Databricks for modern data and AI workloads.

Chapter 1: Introduction to Databricks
· What is Databricks?
· Key features and architecture
· Use cases in analytics and data engineering
Chapter 2: Getting Started
· Creating a Databricks workspace
· Navigating the UI
· Setting up clusters
Chapter 3: Working with Notebooks
· Creating and running notebooks
· Supported languages (Python, SQL, Scala)
· Markdown and visualization basics
Chapter 4: Data Ingestion
· Connecting to data sources (Azure, AWS, JDBC, etc.)
· Reading data into Spark DataFrames
· Handling different file formats (CSV, Parquet, JSON)
Chapter 5: Data Transformation with Spark
· Spark DataFrame operations
· SQL vs PySpark
· Caching and performance tips
Chapter 6: Delta Lake
· What is Delta Lake?
· Creating and querying Delta tables
· Time travel and schema evolution
Chapter 7: Machine Learning in Databricks
· MLflow integration
· Training and tracking models
· Deployment options
Chapter 8: Jobs and Workflows
· Creating and scheduling jobs
· Task orchestration
· Monitoring and alerts
Chapter 9: Security and Governance
· Access control and workspace permissions
· Unity Catalog overview
· Audit logging and compliance
Chapter 10:
· Understanding the Cost Model
· Photon Engine for Faster Queries
· Query Optimization

Table of Contents
Executive Summary	2
Chapter 1: Introduction to Databricks	9
1.1 What is Databricks?	9
1.2 Core Concepts and Architecture	9
1.3 Key Features and Benefits	9
1.4 Databricks vs Traditional Data Platforms	10
1.5 Use Cases Across Industries	10
1.6 Databricks Editions	10
1.7 Summary	11
Chapter 2: Getting Started with Databricks	12
2.1 Creating a Databricks Workspace	12
2.2 Navigating the Databricks Interface	12
2.3 Setting Up a Cluster	13
2.4 Working with Notebooks	13
2.5 Importing Data	14
2.6 Summary	14
Chapter 3: Working with Notebooks	15
3.1 Overview of Databricks Notebooks	15
3.2 Creating and Managing Notebooks	15
3.3 Language Support and Magic Commands	15
3.4 Markdown and Documentation	16
3.5 Visualizations	16
3.6 Collaboration Features	17
3.7 Exporting and Importing Notebooks	17
3.8 Summary	18
Chapter 4: Data Ingestion	19
4.1 Overview of Data Ingestion in Databricks	19
4.2 Supported Data Sources	19
4.3 Mounting External Storage	20
4.4 Reading Data into Spark DataFrames	20
4.5 Writing Data	21
4.6 Using Auto Loader for Streaming Ingestion	21
4.7 Data Ingestion Best Practices	22
4.8 Summary	22
Chapter 5: Data Transformation with Spark	23
5.1 Introduction to Spark DataFrames	23
5.2 Creating DataFrames	23
5.3 Common DataFrame Transformations	23
5.4 Grouping and Aggregation	24
5.5 Joining DataFrames	25
5.6 Working with Nulls	25
5.7 Using SQL for Transformations	26
5.8 Performance Optimization Tips	26
5.9 Summary	27
Chapter 6: Delta Lake	28
6.1 Introduction to Delta Lake	28
6.2 Key Features of Delta Lake	28
6.4 Reading Delta Tables	29
6.5 Updating and Deleting Data	29
6.6 Time Travel	30
6.7 Schema Evolution and Enforcement	30
6.8 Optimizing Delta Tables	30
6.9 Summary	31
Chapter 7: Delta Lake and Data Versioning in Databricks	32
7.1 What is Delta Lake?	32
7.2 Creating Delta Tables	32
7.3 Reading Delta Tables	33
7.4 Time Travel and Data Versioning	33
7.5 Schema Enforcement and Evolution	33
7.6 Deleting and Updating Data	34
7.7 Vacuum and Retention	34
7.8 Real-World Scenario: Auditing Changes	35
7.9 Best Practices	35
Chapter Summary	35
Chapter 7: Machine Learning in Databricks	37
7.1 The Machine Learning Lifecycle in Databricks	37
7.2 Data Preparation with Spark and Delta Lake	37
7.3 Feature Engineering	38
7.4 Model Training	38
7.5 Experiment Tracking with MLflow	39
7.6 Hyperparameter Tuning	39
7.7 Model Registry and Deployment	40
7.8 Real-World Scenario: Predicting Customer Churn	40
Chapter Summary	40
Chapter 8: Jobs and Workflows in Databricks	42
8.1 What Are Jobs and Workflows?	42
8.2 Creating a Job	42
8.3 Job Tasks and Dependencies	43
8.4 Job Clusters vs All-Purpose Clusters	43
8.5 Parameterizing Jobs	43
8.6 Scheduling and Triggers	44
8.7 Monitoring and Alerts	44
8.8 Real-World Scenario: Daily ETL Pipeline	44
8.9 Best Practices	45
Chapter Summary	45
Chapter 9: Security and Governance in Databricks	46
9.1 Identity and Access Management (IAM)	46
9.2 Unity Catalog: Centralized Governance	46
9.3 Data Access Controls	47
9.4 Credential Passthrough and Data Isolation	47
9.5 Audit Logging and Monitoring	47
9.7 Real-World Scenario: Securing Financial Data	48
9.8 Best Practices	49
Chapter Summary	49
Chapter 10: Performance Optimization and Cost Management in Databricks	50
10.1 Understanding the Cost Model	50
10.2 Cluster Sizing and Auto Termination	50
10.3 Photon Engine for Faster Queries	51
10.4 Delta Lake Optimization Techniques	51
10.5 Query Optimization	52
10.6 Job and Workflow Efficiency	52
10.7 Monitoring and Cost Visibility	52
10.8 Real-World Scenario: Optimizing a Daily ETL Job	53
10.9 Best Practices	53
Chapter Summary	53

[bookmark: _Toc212448377]Chapter 1: Introduction to Databricks

[bookmark: _Toc212448378]1.1 What is Databricks?
Databricks is a cloud-based platform designed to unify data engineering, data science, and machine learning workflows. Built on Apache Spark, it provides a collaborative environment for teams to process large-scale data, build models, and deploy analytics solutions efficiently.
Founded by the creators of Apache Spark, Databricks simplifies the complexities of big data processing by offering a managed service that integrates seamlessly with cloud providers like Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP).

[bookmark: _Toc212448379]1.2 Core Concepts and Architecture
Databricks is structured around several key components:
· Workspaces: The central hub where users collaborate using notebooks, dashboards, libraries, and jobs.
· Clusters: Scalable compute resources that run Spark jobs. Clusters can be configured for different workloads (e.g., interactive analysis, automated jobs).
· Notebooks: Interactive documents that support multiple languages (Python, SQL, Scala, R) and allow for code execution, visualization, and documentation.
· Delta Lake: A storage layer that brings reliability and performance to data lakes with ACID transactions, schema enforcement, and time travel.
· Jobs: Scheduled or triggered workflows that automate data pipelines and model training.
· MLflow: An integrated tool for managing the machine learning lifecycle, including experiment tracking, model packaging, and deployment.

[bookmark: _Toc212448380]1.3 Key Features and Benefits
	Feature
	Description

	Unified Analytics
	Combines data engineering, data science, and BI in one platform.

	Scalability
	Automatically scales clusters based on workload, optimizing performance and cost.

	Multi-language Support
	Supports Python, SQL, Scala, and R in a single notebook.

	Delta Lake
	Enables reliable data lakes with ACID transactions and schema evolution.

	MLflow Integration
	Facilitates end-to-end machine learning workflows.

	Collaborative Workspaces
	Real-time collaboration with version control and commenting.

	Security & Governance
	Role-based access control, audit logging, and Unity Catalog for data governance.

[bookmark: _Toc212448381]1.4 Databricks vs Traditional Data Platforms
	Aspect
	Traditional Platforms
	Databricks

	Data Processing
	Batch-oriented, slower
	Real-time, distributed

	Collaboration
	Siloed teams
	Unified workspace

	Scalability
	Manual provisioning
	Auto-scaling clusters

	Machine Learning
	Separate tools
	Integrated MLflow

	Data Governance
	Complex, fragmented
	Centralized with Unity Catalog

[bookmark: _Toc212448382]1.5 Use Cases Across Industries
· Retail: Real-time inventory tracking, customer segmentation, recommendation engines.
· Finance: Fraud detection, risk modeling, compliance analytics.
· Healthcare: Predictive diagnostics, patient data analysis, genomics.
· Manufacturing: Predictive maintenance, supply chain optimization.
· Telecommunications: Network performance analysis, customer churn prediction.

[bookmark: _Toc212448383]1.6 Databricks Editions
Databricks offers several deployment options:
· Databricks on Azure: Deep integration with Azure services like Data Lake, Synapse, and Active Directory.
· Databricks on AWS: Flexible deployment with access to S3, Redshift, and other AWS services.
· Databricks on GCP: Integration with BigQuery, Cloud Storage, and Vertex AI.
Each edition provides similar core functionality but differs in cloud-native integrations and billing models.

[bookmark: _Toc212448384]1.7 Summary
Databricks is a transformative platform for modern data teams. It empowers organizations to break down silos between data engineering, analytics, and machine learning, enabling faster innovation and better decision-making. With its robust architecture, collaborative tools, and enterprise-grade features, Databricks is a cornerstone for scalable, secure, and intelligent data solutions.

[bookmark: _Toc212448385]Chapter 2: Getting Started with Databricks

[bookmark: _Toc212448386]2.1 Creating a Databricks Workspace
To begin using Databricks, you need access to a workspace. A workspace is the environment where users collaborate on notebooks, jobs, libraries, and data.
Options for Access
· Databricks Community Edition: Free tier for learning and experimentation.
· Azure Databricks: Integrated with Microsoft Azure.
· AWS Databricks: Available via AWS Marketplace.
· GCP Databricks: Available through Google Cloud.
Steps to Create a Workspace (Azure Example)
1. Log in to the Azure Portal.
2. Click Create a resource > Analytics > Azure Databricks.
3. Fill in workspace details:
· Workspace name
· Subscription
· Resource group
· Location
· Pricing tier (Standard, Premium)
4. Click Review + Create, then Create.
Once deployed, navigate to the workspace and launch Databricks.

[bookmark: _Toc212448387]2.2 Navigating the Databricks Interface
The Databricks UI is organized into several key areas:
· Workspace: Contains folders, notebooks, libraries, and dashboards.
· Repos: Git-integrated repositories for version control.
· Data: Access to tables, files, and external data sources.
· Compute: Manage clusters and pools.
· Jobs: Create and monitor scheduled tasks.
· MLflow: Track experiments and models.
· Search bar: Quickly locate notebooks, jobs, or data assets.
The interface supports both dark and light themes and is optimized for collaborative workflows.

[bookmark: _Toc212448388]2.3 Setting Up a Cluster
Clusters are the compute engines that run your notebooks and jobs. Databricks abstracts away much of the complexity of managing Spark clusters.
Steps to Create a Cluster
1. Go to Compute > Create Cluster.
2. Provide:
· Cluster name
· Cluster mode (Standard, High Concurrency, Single Node)
· Databricks runtime version
· Auto termination settings
· Worker and driver node types
3. Click Create Cluster.
Clusters can be shared across notebooks or dedicated to specific jobs. You can also configure autoscaling to optimize resource usage.

[bookmark: _Toc212448389]2.4 Working with Notebooks
Notebooks are the core interface for writing and executing code in Databricks.
Creating a Notebook
1. Go to Workspace > Create > Notebook.
2. Name your notebook.
3. Choose a default language (Python, SQL, Scala, R).
4. Select a cluster to attach.
Notebook Features
· Multi-language support: Use python, sql, scala, or r to switch languages.
· Markdown cells: Add documentation and formatting.
· Visualization tools: Built-in charts and graphs.
· Version control: Revisions and Git integration.
· Comments and collaboration: Inline comments for team discussions.

[bookmark: _Toc212448390]2.5 Importing Data
Databricks supports a wide range of data sources:
· Cloud storage: Azure Data Lake, AWS S3, GCP Cloud Storage
· Databases: SQL Server, PostgreSQL, MySQL, Oracle
· File formats: CSV, JSON, Parquet, Avro, Delta
Example: Reading a CSV File
Python
df = spark.read.csv("/mnt/data/sales.csv", header=True, inferSchema=True)
df.show()

You can mount external storage using secrets and credentials, or use built-in connectors for seamless access.

[bookmark: _Toc212448391]2.6 Summary
Getting started with Databricks involves setting up a workspace, launching clusters, and creating notebooks. The platform is designed to be intuitive and scalable, allowing users to focus on data tasks without worrying about infrastructure. With support for multiple languages, rich collaboration features, and easy data access, Databricks provides a powerful foundation for modern data analytics and machine learning workflows.

[bookmark: _Toc212448392]Chapter 3: Working with Notebooks

[bookmark: _Toc212448393]3.1 Overview of Databricks Notebooks
Databricks notebooks are interactive documents that combine code, visualizations, and narrative text. They are central to the Databricks experience, enabling users to explore data, build models, and share insights collaboratively.
Notebooks support multiple programming languages and are designed for real-time collaboration, making them ideal for data exploration, transformation, and analysis.

[bookmark: _Toc212448394]3.2 Creating and Managing Notebooks
Creating a New Notebook
1. Navigate to the Workspace tab.
2. Click Create > Notebook.
3. Provide a name for your notebook.
4. Select a default language (Python, SQL, Scala, R).
5. Choose a cluster to attach the notebook to.
Once created, the notebook opens in a new tab, ready for code input and execution.
Organizing Notebooks
· Notebooks can be stored in folders within the workspace.
· You can move, rename, or delete notebooks using the workspace UI.
· Version history is automatically maintained, allowing you to revert to previous states.

[bookmark: _Toc212448395]3.3 Language Support and Magic Commands
Databricks notebooks support multiple languages. You can mix languages using magic commands:
	Magic Command
	Language

	%python
	Python

	%sql
	SQL

	%scala
	Scala

	%r
	R

	%md
	Markdown

Example: Mixing Languages
Python
%python
df = spark.read.csv("/mnt/data/sales.csv", header=True, inferSchema=True)
df.createOrReplaceTempView("sales")

%sql
SELECT Region, SUM(Revenue) FROM sales GROUP BY Region

[bookmark: _Toc212448396]3.4 Markdown and Documentation
Markdown cells allow you to add formatted text, headers, bullet points, links, and images to your notebook. This is useful for documenting your process, explaining code, or presenting results.
Markdown Example
Markdown
Sales Analysis

This notebook analyzes regional sales performance using Spark and SQL.
Show more lines
You can toggle between code and markdown cells using the cell type selector or by pressing Ctrl + M followed by M.

[bookmark: _Toc212448397]3.5 Visualizations
Databricks provides built-in visualization tools for quick insights:
· Bar charts
· Line graphs
· Pie charts
· Maps
· Tables
After running a SQL query or displaying a DataFrame, click the Visualization button to choose a chart type.
Example: SQL Visualization
SQL
SELECT Category, COUNT(*) AS Count FROM products GROUP BY Category

Click the chart icon to visualize the result as a bar chart.

[bookmark: _Toc212448398]3.6 Collaboration Features
Databricks notebooks are designed for team collaboration:
· Real-time editing: Multiple users can edit the same notebook simultaneously.
· Comments: Add inline comments to specific lines of code.
· Revision history: View and restore previous versions.
· Sharing: Share notebooks with users or groups with view/edit permissions.
These features make notebooks ideal for cross-functional teams working on shared data projects.

[bookmark: _Toc212448399]3.7 Exporting and Importing Notebooks
You can export notebooks in various formats:
· HTML: For sharing static reports.
· IPython (.ipynb): For use in Jupyter environments.
· DBC: Databricks archive format for bulk import/export.
To export:
· Click the notebook’s File menu > Export > Choose format.
To import:
· Go to Workspace > Import > Upload the notebook file.

[bookmark: _Toc212448400]3.8 Summary
Databricks notebooks are a powerful tool for interactive data analysis, combining code, documentation, and visualization in a single interface. With support for multiple languages, real-time collaboration, and built-in visualization tools, notebooks streamline the development and sharing of data workflows across teams.

[bookmark: _Toc212448401]Chapter 4: Data Ingestion

[bookmark: _Toc212448402]4.1 Overview of Data Ingestion in Databricks
Data ingestion is the process of collecting and importing data for immediate use or storage in a database. In Databricks, ingestion is a foundational step in building data pipelines, enabling users to bring data from various sources into the platform for processing, analysis, and machine learning.
Databricks supports a wide range of data sources and formats, making it highly versatile for enterprise data workflows.

[bookmark: _Toc212448403]4.2 Supported Data Sources
Databricks can ingest data from multiple sources, including:
Cloud Storage
· Azure Data Lake Storage (ADLS)
· Amazon S3
· Google Cloud Storage
Databases
· SQL Server
· PostgreSQL
· MySQL
· Oracle
· Snowflake
· Databricks SQL Warehouses
Streaming Sources
· Apache Kafka
· Event Hubs
· Kinesis
File Formats
· CSV
· JSON
· Parquet
· Avro
· ORC
· Delta

[bookmark: _Toc212448404]4.3 Mounting External Storage
To access external cloud storage, Databricks allows you to mount storage locations to the workspace.
Example: Mounting Azure Data Lake Storage
Python
dbutils.fs.mount(
source = "wasbs://mycontainer@myaccount.blob.core.windows.net/",
mount_point = "/mnt/mydata",
extra_configs = {"fs.azure.account.key.myaccount.blob.core.windows.net": "<storage-access-key>"}
)

Once mounted, you can access files using paths like /mnt/mydata/sales.csv.

[bookmark: _Toc212448405]4.4 Reading Data into Spark DataFrames
Databricks uses Apache Spark under the hood, and the primary data structure is the DataFrame.
Reading a CSV File
Python
df = spark.read.csv("/mnt/mydata/sales.csv", header=True, inferSchema=True)
df.show()

Reading a JSON File
Python
df = spark.read.json("/mnt/mydata/events.json")
df.printSchema()

Reading a Parquet File
Python
df = spark.read.parquet("/mnt/mydata/transactions.parquet")

[bookmark: _Toc212448406]4.5 Writing Data
Once data is processed, you can write it back to storage or a database.
Writing to Parquet
Python
df.write.mode("overwrite").parquet("/mnt/output/sales_summary.parquet")

Writing to Delta Lake
Python
df.write.format("delta").mode("overwrite").save("/mnt/delta/sales_data")

Writing to a Table
Python
df.write.saveAsTable("sales_summary")

[bookmark: _Toc212448407]4.6 Using Auto Loader for Streaming Ingestion
Databricks Auto Loader simplifies the ingestion of continuously arriving data files.
Example: Auto Loader with CSV
Python
df = (
spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "csv")
.option("header", "true")
.load("/mnt/incoming-data/")
)

Auto Loader automatically tracks new files and supports schema inference and evolution.

[bookmark: _Toc212448408]4.7 Data Ingestion Best Practices
· Use schema inference cautiously: For production workloads, define schemas explicitly to avoid unexpected changes.
· Partition data: Improves query performance and scalability.
· Monitor ingestion jobs: Use Databricks Jobs and alerts to track ingestion status.
· Secure access: Use secrets and role-based access control for sensitive data sources.
· Validate data: Perform quality checks post-ingestion to ensure integrity.

[bookmark: _Toc212448409]4.8 Summary
Databricks provides powerful and flexible tools for ingesting data from a wide variety of sources and formats. Whether you're working with batch files, databases, or streaming data, Databricks simplifies the process of bringing data into your analytics environment. With support for Delta Lake, Auto Loader, and cloud-native integrations, it enables scalable and reliable data pipelines for modern data teams.

[bookmark: _Toc212448410]Chapter 5: Data Transformation with Spark
[bookmark: _Toc212448411]5.1 Introduction to Spark DataFrames
In Databricks, data transformation is primarily performed using Apache Spark DataFrames. A DataFrame is a distributed collection of data organized into named columns, similar to a table in a relational database. Spark DataFrames provide a powerful API for data manipulation, supporting operations in Python (PySpark), SQL, Scala, and R.
Databricks abstracts much of the complexity of Spark, allowing users to focus on logic rather than infrastructure.

[bookmark: _Toc212448412]5.2 Creating DataFrames
You can create DataFrames from various sources:
From CSV
Python
df = spark.read.csv("/mnt/data/sales.csv", header=True, inferSchema=True)

From JSON
Python
df = spark.read.json("/mnt/data/events.json")

From SQL Table
Python
df = spark.sql("SELECT * FROM sales_data")

From Python Objects
Python
data = [("Alice", 34), ("Bob", 45)]
columns = ["Name", "Age"]
df = spark.createDataFrame(data, columns)

[bookmark: _Toc212448413]5.3 Common DataFrame Transformations
Selecting Columns
Python
df.select("Name", "Age").show()
Filtering Rows
Python
df.filter(df.Age > 40).show()
``
Show more lines
Adding New Columns
Python
df.withColumn("AgeGroup", when(df.Age > 40, "Senior").otherwise("Adult")).show()
Show more lines
Renaming Columns
Python
df.withColumnRenamed("Name", "CustomerName")
Show more lines
Dropping Columns
Python
df.drop("UnnecessaryColumn")
Show more lines
Sorting
Python
df.orderBy("Revenue", ascending=False).show()
Show more lines

[bookmark: _Toc212448414]5.4 Grouping and Aggregation
Spark makes it easy to perform group-based calculations.
Group By and Aggregate
Python
df.groupBy("Region").agg(
sum("Revenue").alias("TotalRevenue"),
avg("Revenue").alias("AverageRevenue")
).show()

Pivoting Data
Python
df.groupBy("Product").pivot("Region").sum("Revenue").show()

[bookmark: _Toc212448415]5.5 Joining DataFrames
Joining is essential for combining datasets.
Inner Join
Python
df1.join(df2, df1.CustomerID == df2.CustomerID, "inner")

Left Outer Join
Python
df1.join(df2, "CustomerID", "left")
Show more lines
Cross Join
Python
df1.crossJoin(df2)
Show more lines

[bookmark: _Toc212448416]5.6 Working with Nulls
Handling missing data is a common transformation task.
Dropping Nulls
Python
df.na.drop()

Filling Nulls
Python
df.na.fill({"Revenue": 0, "Region": "Unknown"})

Replacing Values
Python
df.replace("N/A", None)

[bookmark: _Toc212448417]5.7 Using SQL for Transformations
Databricks allows you to register DataFrames as temporary views and use SQL for transformations.
Registering a Temp View
Python
df.createOrReplaceTempView("sales")

Running SQL Queries
SQL
%sql
SELECT Region, SUM(Revenue) AS TotalRevenue
FROM sales
GROUP BY Region
ORDER BY TotalRevenue DESC

This approach is especially useful for analysts familiar with SQL syntax.

[bookmark: _Toc212448418]5.8 Performance Optimization Tips
· Use cache() or persist() for frequently accessed DataFrames.
· Filter early to reduce data volume.
· Avoid shuffling large datasets unnecessarily (e.g., during joins).
· Use broadcast joins when one dataset is small:
Python
from pyspark.sql.functions import broadcast
df1.join(broadcast(df2), "CustomerID")

· Partition wisely when writing data to disk.

[bookmark: _Toc212448419]5.9 Summary
Data transformation in Databricks leverages the full power of Apache Spark through intuitive APIs and SQL support. Whether you're cleaning, aggregating, joining, or reshaping data, Spark DataFrames provide a scalable and efficient way to handle large datasets. Mastering these operations is key to building robust data pipelines and preparing data for analysis or machine learning.

[bookmark: _Toc212448420]Chapter 6: Delta Lake

[bookmark: _Toc212448421]6.1 Introduction to Delta Lake
Delta Lake is an open-source storage layer that brings reliability, performance, and governance to data lakes. Built on top of Apache Spark, Delta Lake enables ACID transactions, schema enforcement, time travel, and unified batch and streaming processing.
Databricks integrates Delta Lake natively, making it the default format for most data operations. It solves common challenges in traditional data lakes, such as inconsistent data, lack of schema control, and difficulty managing concurrent writes.

[bookmark: _Toc212448422]6.2 Key Features of Delta Lake
	Feature
	Description

	ACID Transactions
	Ensures data integrity during concurrent reads/writes.

	Schema Enforcement
	Prevents corrupt or inconsistent data from being written.

	Time Travel
	Allows querying previous versions of data.

	Unified Batch & Streaming
	Supports both real-time and scheduled data processing.

	Scalable Metadata Handling
	Efficiently manages large tables with billions of records.

	Data Lineage
	Tracks changes and supports auditability.

6.3 Creating Delta Tables
You can create Delta tables from existing DataFrames or directly via SQL.
Using PySpark
Python
df.write.format("delta").mode("overwrite").save("/mnt/delta/sales_data")

Using SQL
SQL
CREATE TABLE sales_data
USING DELTA
LOCATION '/mnt/delta/sales_data'

[bookmark: _Toc212448423]6.4 Reading Delta Tables
Delta tables can be read like any other Spark DataFrame.
PySpark
Python
df = spark.read.format("delta").load("/mnt/delta/sales_data")
df.show()

SQL
SQL
SELECT * FROM sales_data

[bookmark: _Toc212448424]6.5 Updating and Deleting Data
Delta Lake supports MERGE, UPDATE, and DELETE operations, which are not available in traditional data lakes.
Update Example
SQL
UPDATE sales_data
SET Revenue = Revenue * 1.1
WHERE Region = 'West'

Delete Example
SQL
DELETE FROM sales_data
WHERE Revenue < 1000

Merge Example
SQL
MERGE INTO sales_data AS target
USING new_sales AS source
ON target.OrderID = source.OrderID
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *

[bookmark: _Toc212448425]6.6 Time Travel
Delta Lake maintains a transaction log that allows you to query previous versions of data.
Querying a Previous Version
SQL
SELECT * FROM sales_data VERSION AS OF 3

Querying by Timestamp
SQL
SELECT * FROM sales_data TIMESTAMP AS OF '2025-10-01T00:00:00.000Z'

This is useful for debugging, auditing, and recovering from accidental overwrites.

[bookmark: _Toc212448426]6.7 Schema Evolution and Enforcement
Delta Lake supports schema enforcement to prevent incompatible writes and schema evolution to allow controlled changes.
Schema Enforcement Example
Python
Will fail if schema doesn't match
df.write.format("delta").mode("append").save("/mnt/delta/sales_data")

Schema Evolution Example
Python
df.write.option("mergeSchema", "true").format("delta").mode("append").save("/mnt/delta/sales_data")

[bookmark: _Toc212448427]6.8 Optimizing Delta Tables
Delta Lake includes commands to optimize performance:
OPTIMIZE
Compacts small files into larger ones for faster reads.
SQL
OPTIMIZE sales_data

VACUUM
Removes old data files no longer referenced by the Delta log.
SQL
VACUUM sales_data RETAIN 168 HOURS

[bookmark: _Toc212448428]6.9 Summary
Delta Lake enhances the reliability and performance of data lakes by introducing transactional consistency, schema control, and powerful features like time travel and merge operations. In Databricks, Delta Lake is the default and recommended format for scalable, production-grade data pipelines. Mastering Delta Lake is essential for building robust, maintainable, and auditable data solutions.

[bookmark: _Toc212448429]Chapter 7: Delta Lake and Data Versioning in Databricks
Introduction
Delta Lake is an open-source storage layer that brings ACID transactions, scalable metadata handling, and unified streaming and batch data processing to Apache Spark and big data workloads. In Databricks, Delta Lake is the default storage format for many operations, offering powerful features like time travel, schema enforcement, and data versioning.
This chapter explores how to use Delta Lake in Databricks, with hands-on examples and real-world use cases.

[bookmark: _Toc212448430]7.1 What is Delta Lake?
Delta Lake is built on top of Parquet and adds:
· ACID transactions: Ensures data integrity with commit logs.
· Schema enforcement and evolution: Prevents bad data from corrupting your tables.
· Time travel: Query previous versions of data.
· Unified batch and streaming: Use the same table for both.

[bookmark: _Toc212448431]7.2 Creating Delta Tables
You can create Delta tables in several ways:
From a DataFrame
Python
df.write.format("delta").save("/mnt/datalake/sales_data")

As a Managed Table
SQL
CREATE TABLE sales_data
USING DELTA
AS SELECT * FROM parquet.`/mnt/raw/sales_data`

Converting Parquet to Delta
Python
spark.read.format("parquet").load("/mnt/raw/sales_data") \
.write.format("delta").save("/mnt/delta/sales_data")

[bookmark: _Toc212448432]7.3 Reading Delta Tables
Python
df = spark.read.format("delta").load("/mnt/delta/sales_data")

Or using SQL:
SQL
SELECT * FROM delta.`/mnt/delta/sales_data`

[bookmark: _Toc212448433]7.4 Time Travel and Data Versioning
Delta Lake automatically versions your data. You can query older versions using:
By Version Number
SQL
SELECT * FROM sales_data VERSION AS OF 3

By Timestamp
SQL
SELECT * FROM sales_data TIMESTAMP AS OF '2025-10-01T00:00:00.000Z'

Python Example
Python
df = spark.read.format("delta") \
.option("versionAsOf", 3) \
.load("/mnt/delta/sales_data")

[bookmark: _Toc212448434]7.5 Schema Enforcement and Evolution
Schema Enforcement
Delta Lake prevents writes that do not match the schema:
Python
This will fail if the schema doesn't match
df.write.format("delta").mode("append").save("/mnt/delta/sales_data")

Schema Evolution
To allow schema changes:
Python
df.write.option("mergeSchema", "true") \
.format("delta").mode("append") \
.save("/mnt/delta/sales_data")

[bookmark: _Toc212448435]7.6 Deleting and Updating Data
Delta Lake supports DELETE, UPDATE, and MERGE operations.
DELETE Example
SQL
DELETE FROM sales_data WHERE region = 'West'

UPDATE Example
SQL
UPDATE sales_data SET revenue = revenue * 1.1 WHERE region = 'East'

MERGE Example (Upsert)
SQL
MERGE INTO sales_data AS target
USING updates AS source
ON target.id = source.id
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *

[bookmark: _Toc212448436]7.7 Vacuum and Retention
Delta Lake retains old versions for time travel. Use VACUUM to clean up:
SQL
VACUUM sales_data RETAIN 168 HOURS

⚠️ By default, Delta Lake retains data for 7 days. To override this, set:
SQL
SET spark.databricks.delta.retentionDurationCheck.enabled = false

[bookmark: _Toc212448437]7.8 Real-World Scenario: Auditing Changes
Use Case: A financial team needs to audit changes to a transactions table.
Solution:
· Use Delta Lake time travel to compare versions.
· Generate diffs using EXCEPT or NOT EXISTS.
SQL
SELECT * FROM sales_data VERSION AS OF 5
EXCEPT
SELECT * FROM sales_data VERSION AS OF 6

[bookmark: _Toc212448438]7.9 Best Practices
· Use partitioning for large datasets.
· Regularly VACUUM to manage storage.
· Use Z-Ordering to optimize queries.
· Enable Auto Optimize and Auto Compaction in Databricks.

[bookmark: _Toc212448439]Chapter Summary
	Feature
	Benefit

	ACID Transactions
	Ensures data reliability

	Time Travel
	Enables rollback and auditing

	Schema Enforcement
	Prevents bad data from corrupting tables

	Schema Evolution
	Allows flexibility in data structure

	Merge/Update/Delete
	Supports complex data manipulation

	Vacuum
	Manages storage and performance

[bookmark: _Toc212448440]
Chapter 7: Machine Learning in Databricks
Introduction
Databricks provides a unified platform for building, training, and deploying machine learning (ML) models at scale. With native support for Apache Spark, MLflow, Delta Lake, and scalable compute, Databricks simplifies the end-to-end ML lifecycle—from data preparation to model deployment.
This chapter walks through the core components of machine learning in Databricks, including data preparation, model training, hyperparameter tuning, tracking experiments with MLflow, and deploying models for inference.

[bookmark: _Toc212448441]7.1 The Machine Learning Lifecycle in Databricks
The ML lifecycle in Databricks typically follows these stages:
1. Data Preparation: Clean, transform, and explore data using Spark and Delta Lake.
2. Feature Engineering: Create meaningful features using Spark SQL, Python, or MLlib.
3. Model Training: Use libraries like scikit-learn, XGBoost, or Spark MLlib.
4. Experiment Tracking: Log metrics, parameters, and models using MLflow.
5. Model Tuning: Optimize hyperparameters using grid/random search or Hyperopt.
6. Model Deployment: Register and serve models using MLflow Model Registry.

[bookmark: _Toc212448442]7.2 Data Preparation with Spark and Delta Lake
Databricks allows you to work with large datasets using Spark DataFrames and Delta Lake.
Python
df = spark.read.format("delta").load("/mnt/datalake/cleaned_customer_data")
df = df.filter("age > 18").select("age", "income", "churn")

You can also use SQL:
SQL
SELECT age, income, churn
FROM delta.`/mnt/datalake/cleaned_customer_data`
WHERE age > 18

[bookmark: _Toc212448443]7.3 Feature Engineering
Feature engineering transforms raw data into features suitable for ML models.
Using Spark MLlib
Python
from pyspark.ml.feature import VectorAssembler

assembler = VectorAssembler(
inputCols=["age", "income"],
outputCol="features"
)
final_df = assembler.transform(df)

You can also scale features:
Python
from pyspark.ml.feature import StandardScaler

scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures")
scaled_df = scaler.fit(final_df).transform(final_df)

[bookmark: _Toc212448444]7.4 Model Training
Databricks supports multiple ML libraries:
· Spark MLlib (distributed)
· scikit-learn (single-node)
· XGBoost, LightGBM, TensorFlow, PyTorch
Example: Logistic Regression with Spark MLlib
Python
from pyspark.ml.classification import LogisticRegression

lr = LogisticRegression(featuresCol="scaledFeatures", labelCol="churn")
model = lr.fit(scaled_df)
predictions = model.transform(scaled_df)

[bookmark: _Toc212448445]7.5 Experiment Tracking with MLflow
MLflow is integrated into Databricks and allows you to:
· Log parameters, metrics, and artifacts
· Compare experiments
· Register and deploy models
Basic MLflow Logging
Python
import mlflow
import mlflow.spark

with mlflow.start_run():
model = lr.fit(scaled_df)
mlflow.spark.log_model(model, "logistic_model")
mlflow.log_param("model_type", "logistic_regression")
mlflow.log_metric("accuracy", 0.87)

[bookmark: _Toc212448446]7.6 Hyperparameter Tuning
Databricks supports tuning with:
· CrossValidator (Spark MLlib)
· Hyperopt (Bayesian optimization)
Example: Hyperopt with MLflow
Python
from hyperopt import fmin, tpe, hp, Trials
import mlflow

def objective(params):
with mlflow.start_run(nested=True):
lr = LogisticRegression(regParam=params["regParam"])
model = lr.fit(scaled_df)
accuracy = ... # compute accuracy
mlflow.log_metric("accuracy", accuracy)
return -accuracy

search_space = {"regParam": hp.uniform("regParam", 0.01, 0.1)}
best = fmin(fn=objective, space=search_space, algo=tpe.suggest, max_evals=10)

[bookmark: _Toc212448447]7.7 Model Registry and Deployment
Once a model is trained and logged, you can register it:
Python
mlflow.register_model("runs:/<run_id>/logistic_model", "ChurnModel")

You can then:
· Promote to staging or production
· Serve via REST API
· Monitor performance over time

[bookmark: _Toc212448448]7.8 Real-World Scenario: Predicting Customer Churn
Use Case: A telecom company wants to predict customer churn.
Steps:
1. Load and clean customer data from Delta Lake.
2. Engineer features like tenure, usage, and support calls.
3. Train a logistic regression model.
4. Track experiments with MLflow.
5. Tune hyperparameters with Hyperopt.
6. Register and deploy the best model.
This pipeline can be scheduled as a Databricks Job and monitored using MLflow UI.

[bookmark: _Toc212448449]Chapter Summary
Machine learning in Databricks is streamlined and scalable, thanks to its integration with Spark, Delta Lake, and MLflow. Here's a recap of the key takeaways:
· Unified Platform: Databricks supports the full ML lifecycle from data prep to deployment.
· Scalable Training: Use Spark MLlib for distributed training or integrate with popular Python libraries.
· MLflow Integration: Track, compare, and deploy models with ease.
· Hyperparameter Tuning: Optimize models using Hyperopt or Spark CV.
· Model Registry: Manage model versions and promote them through stages.
· Real-World Ready: Build production-grade pipelines with scheduling, monitoring, and REST APIs.
[bookmark: _Toc212448450]
Chapter 8: Jobs and Workflows in Databricks
Introduction
Databricks Jobs and Workflows provide a powerful way to orchestrate data pipelines, automate notebook execution, and schedule recurring tasks. Whether you're running ETL pipelines, training machine learning models, or refreshing dashboards, Jobs and Workflows allow you to manage and monitor these processes with ease.
This chapter explores how to create, configure, and monitor Jobs and Workflows in Databricks, including real-world use cases and best practices.

[bookmark: _Toc212448451]8.1 What Are Jobs and Workflows?
· A Job in Databricks is a way to run a task (e.g., a notebook, JAR, Python script, or SQL query) on a schedule or in response to an event.
· A Workflow is a collection of tasks with dependencies, forming a directed acyclic graph (DAG) that defines the execution order.
Jobs and Workflows support:
· Task dependencies
· Retry policies
· Cluster reuse or job clusters
· Notifications and alerts
· Parameter passing

[bookmark: _Toc212448452]8.2 Creating a Job
You can create a job via the Databricks UI, REST API, or Terraform.
Via UI
1. Go to Workflows > Jobs > Create Job
2. Name your job
3. Add a task (e.g., run a notebook)
4. Choose a cluster (existing or job cluster)
5. Set a schedule (optional)
6. Save and run
Via Python API
Python
dbutils.notebook.run("/Users/randy.fadler/etl_pipeline", 60, {"date": "2025-10-01"})

[bookmark: _Toc212448453]8.3 Job Tasks and Dependencies
Each job can have multiple tasks, and tasks can depend on the successful completion of others.
Example DAG
Extract → Transform → Load → Notify
You can define dependencies in the UI by linking tasks or using the JSON job definition.

[bookmark: _Toc212448454]8.4 Job Clusters vs All-Purpose Clusters
· Job Clusters: Ephemeral, created for the job and terminated after.
· All-Purpose Clusters: Shared, persistent clusters used for development.
Best Practice: Use job clusters for production workflows to ensure isolation and cost control.

[bookmark: _Toc212448455]8.5 Parameterizing Jobs
Jobs can accept parameters to make them dynamic.
Notebook Example
Python
dbutils.widgets.text("date", "")
date = dbutils.widgets.get("date")

Passing Parameters in Job Config
JSON
"base_parameters": {
"date": "2025-10-01"
}

[bookmark: _Toc212448456]8.6 Scheduling and Triggers
Jobs can be triggered:
· Manually
· On a schedule (e.g., cron)
· Via API or webhook
· From another job
Cron Example
0 6 * * * → Run daily at 6 AM

[bookmark: _Toc212448457]8.7 Monitoring and Alerts
Databricks provides a Job Run Dashboard with:
· Run history
· Task duration
· Logs and error messages
· Retry attempts
You can configure email or webhook alerts for:
· Success
· Failure
· Skipped runs

[bookmark: _Toc212448458]8.8 Real-World Scenario: Daily ETL Pipeline
Use Case: A retail company needs to run a daily ETL pipeline that:
1. Extracts data from a Delta table
2. Transforms it using Spark
3. Loads it into a reporting table
4. Sends a Slack notification
Workflow:
· Task 1: Run extract_data notebook
· Task 2: Run transform_data notebook (depends on Task 1)
· Task 3: Run load_data notebook (depends on Task 2)
· Task 4: Run notify_slack script (depends on Task 3)
This job runs daily at 2 AM using a job cluster and logs all activity for auditing.

[bookmark: _Toc212448459]8.9 Best Practices
· Use job clusters for isolation and cost efficiency.
· Parameterize notebooks for reusability.
· Use task dependencies to build robust workflows.
· Enable retry policies for transient failures.
· Use alerts to monitor job health.
· Store logs and outputs in DBFS or Delta Lake for auditing.

[bookmark: _Toc212448460]Chapter Summary
Databricks Jobs and Workflows are essential for automating and orchestrating data tasks. They provide a scalable, reliable, and flexible way to manage everything from simple notebook runs to complex DAGs.
	Feature
	Benefit

	Job Clusters
	Isolated, cost-effective execution

	Task Dependencies
	Build complex workflows with control

	Parameterization
	Reuse notebooks with dynamic inputs

	Scheduling
	Automate recurring tasks

	Monitoring & Alerts
	Ensure reliability and observability

	Real-World Ready
	Supports ETL, ML, reporting, and more

[bookmark: _Toc212448461]Chapter 9: Security and Governance in Databricks
Introduction
Security and governance are critical pillars of any enterprise data platform. Databricks provides a robust set of tools and integrations to ensure data protection, access control, auditability, and compliance with organizational and regulatory standards.
This chapter explores how Databricks handles security and governance, including identity and access management, data access controls, Unity Catalog, audit logging, and compliance features.

[bookmark: _Toc212448462]9.1 Identity and Access Management (IAM)
Databricks integrates with cloud-native IAM systems to manage user and group access.
Authentication Options
· SSO (Single Sign-On) via SAML, SCIM, or OIDC
· Azure Active Directory, AWS IAM, or Google Identity
· Multi-Factor Authentication (MFA) support
User Provisioning
· SCIM APIs allow automated user/group provisioning and deprovisioning.
· Groups can be synced from identity providers for role-based access control (RBAC).

[bookmark: _Toc212448463]9.2 Unity Catalog: Centralized Governance
Unity Catalog is Databricks’ unified governance solution for all data assets.
Key Features
· Fine-grained access control at the table, column, and row level
· Centralized metadata management across workspaces
· Data lineage tracking for auditing and impact analysis
· Support for multiple data formats (Delta, Parquet, CSV, etc.)
Object Hierarchy
Metastore → Catalog → Schema → Table/View/Function
Access Control Example
SQL
GRANT SELECT ON TABLE sales_data TO `finance_analysts`

[bookmark: _Toc212448464]9.3 Data Access Controls
Databricks supports multiple layers of data access control:
Table-Level Access
· Managed via Unity Catalog or legacy table ACLs
Column-Level Access
· Restrict access to sensitive columns (e.g., SSNs, salaries)
Row-Level Filtering
· Use dynamic views to enforce row-level security
SQL
CREATE OR REPLACE VIEW secure_sales AS
SELECT * FROM sales_data
WHERE region = current_user_region()

[bookmark: _Toc212448465]9.4 Credential Passthrough and Data Isolation
Credential Passthrough
· Ensures users access data using their own cloud credentials
· Supports Azure Data Lake, AWS S3, and Google Cloud Storage
Data Isolation
· Workspaces can be isolated by business unit or environment (e.g., dev, test, prod)
· Job clusters can be configured with network isolation, private subnets, and no public IPs

[bookmark: _Toc212448466]9.5 Audit Logging and Monitoring
Databricks provides detailed audit logs for:
· User logins and workspace access
· Job and notebook execution
· Data access events
· Permission changes
Log Delivery
· Logs can be delivered to cloud storage, SIEM tools, or Databricks SQL dashboards
Example Use Case
· Detect unauthorized access attempts
· Monitor data exfiltration risks
· Track changes to critical datasets

9.6 Compliance and Certifications
Databricks complies with major industry standards:
	Standard
	Description

	SOC 2 Type II
	Controls for security, availability, and confidentiality

	ISO 27001
	Information security management

	HIPAA
	Healthcare data protection

	GDPR
	EU data privacy regulation

	FedRAMP
	U.S. government cloud security

These certifications help ensure that Databricks meets the needs of regulated industries like finance, healthcare, and government.

[bookmark: _Toc212448467]9.7 Real-World Scenario: Securing Financial Data
Use Case: A financial institution needs to restrict access to PII and ensure auditability.
Solution:
1. Use Unity Catalog to manage access to sensitive tables.
2. Apply column-level masking for PII fields.
3. Enable credential passthrough for data lake access.
4. Configure audit log delivery to a SIEM.
5. Use row-level security to restrict data by region.
This setup ensures compliance with internal policies and external regulations like SOX and GDPR.

[bookmark: _Toc212448468]9.8 Best Practices
· Use Unity Catalog for centralized governance.
· Apply least privilege access principles.
· Enable credential passthrough for secure data access.
· Regularly review audit logs and access patterns.
· Use separate workspaces for dev/test/prod environments.
· Automate user provisioning with SCIM and identity provider sync.

[bookmark: _Toc212448469]Chapter Summary
Security and governance in Databricks are designed to meet the needs of modern enterprises. With tools like Unity Catalog, credential passthrough, and audit logging, organizations can confidently manage data access, ensure compliance, and protect sensitive information.
	Area
	Key Capabilities

	Identity Management
	SSO, SCIM, MFA

	Access Control
	Table, column, row-level permissions

	Unity Catalog
	Centralized governance and lineage

	Credential Passthrough
	Secure, user-based data access

	Audit Logging
	Full visibility into data and user activity

	Compliance
	SOC 2, ISO 27001, HIPAA, GDPR, FedRAMP

[bookmark: _Toc212448470]Chapter 10: Performance Optimization and Cost Management in Databricks
Introduction
As data volumes and workloads grow, optimizing performance and managing costs become essential for maintaining a scalable and efficient Databricks environment. This chapter focuses on techniques to improve query performance, cluster efficiency, and cost control using built-in Databricks features and best practices.

[bookmark: _Toc212448471]10.1 Understanding the Cost Model
Databricks pricing is based on DBUs (Databricks Units), which are billed per second based on:
· Cluster type (standard, photon, GPU)
· Instance type (memory-optimized, compute-optimized)
· Workload type (interactive, job, all-purpose)
Key Cost Drivers
· Cluster uptime
· Number of nodes
· Job frequency and duration
· Data storage and I/O

[bookmark: _Toc212448472]10.2 Cluster Sizing and Auto Termination
Right-Sizing Clusters
· Avoid over-provisioning: match cluster size to workload.
· Use autoscaling to dynamically adjust node count.
JSON
"autoscale": {
"min_workers": 2,
"max_workers": 8
}

Auto Termination
· Set idle timeout to shut down unused clusters.
JSON
"autotermination_minutes": 15

[bookmark: _Toc212448473]10.3 Photon Engine for Faster Queries
Photon is a vectorized query engine optimized for modern CPUs.
Benefits
· Up to 3x faster performance for SQL and Delta workloads
· Lower compute costs due to faster execution
How to Enable
· Use a Photon-enabled cluster in the UI or API
· Works best with Delta Lake and SQL workloads

[bookmark: _Toc212448474]10.4 Delta Lake Optimization Techniques
Delta Lake provides several tools to improve performance:
Z-Ordering
· Optimizes file layout for faster filtering
SQL
OPTIMIZE sales_data ZORDER BY (region, date)

File Compaction
· Reduces small files for better read performance
SQL
OPTIMIZE sales_data

Data Skipping
· Automatically skips irrelevant files during queries (enabled by default)

[bookmark: _Toc212448475]10.5 Query Optimization
Caching
· Use CACHE TABLE or df.cache() to store intermediate results in memory.
SQL
CACHE TABLE customer_summary

Broadcast Joins
· Use broadcast() for small dimension tables to avoid shuffles.
Python
from pyspark.sql.functions import broadcast
df = large_df.join(broadcast(small_df), "id")

Avoid Wide Transformations
· Minimize operations like groupBy and distinct on large datasets.

[bookmark: _Toc212448476]10.6 Job and Workflow Efficiency
· Use job clusters instead of all-purpose clusters for scheduled tasks.
· Chain tasks with dependencies to avoid idle compute.
· Use notebook parameters to reuse logic across jobs.

[bookmark: _Toc212448477]10.7 Monitoring and Cost Visibility
Databricks provides tools to monitor usage and costs:
Cluster Metrics
· CPU, memory, and disk usage
· Task execution time
Cost Reports
· Available via Databricks Admin Console
· Integrate with cloud billing tools (e.g., Azure Cost Management, AWS Cost Explorer)

[bookmark: _Toc212448478]10.8 Real-World Scenario: Optimizing a Daily ETL Job
Problem: A daily ETL job takes 90 minutes and costs $50 per run.
Optimization Steps:
1. Enable Photon for faster SQL execution.
2. Use Z-Ordering and OPTIMIZE on Delta tables.
3. Switch to a job cluster with autoscaling.
4. Add auto termination after 10 minutes of idle time.
5. Cache intermediate results to avoid recomputation.
Result: Job duration reduced to 30 minutes, cost cut to $15 per run.

[bookmark: _Toc212448479]10.9 Best Practices
· Use Photon for SQL-heavy workloads.
· Regularly OPTIMIZE and VACUUM Delta tables.
· Enable autoscaling and auto termination.
· Monitor cluster metrics and job durations.
· Use job clusters for production pipelines.
· Review cost reports monthly to identify savings.

[bookmark: _Toc212448480]Chapter Summary
Performance and cost optimization in Databricks is a continuous process that involves tuning clusters, optimizing queries, and leveraging platform features like Photon and Delta Lake. By applying these strategies, teams can reduce costs, improve reliability, and scale efficiently.
	Area
	Optimization Strategy

	Cluster Management
	Autoscaling, auto termination, job clusters

	Query Performance
	Photon engine, caching, broadcast joins

	Delta Lake
	Z-Ordering, compaction, data skipping

	Cost Monitoring
	Admin console, cloud billing integration

	Workflow Efficiency
	Task chaining, parameterization, reuse

2 | Page

image1.png
< databricks

Databricks
Learning
Booklet

